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Reliability Estimation of Buried Gas Pipelines
in terms of Various Types of Random Variable Distribution
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This paper presents the effects of corrosion environments of failure pressure model for buried
pipelines on fajlure prediction by using a failure probability. The FORM (first order reliability
method) is used in order to estimate the failure probability in the buried pipelines with cor-
rosion defects. The effects of varying distribution types of random variables such as normal,
lognormal and Weibull distributions on the failure probability of buried pipelines are sys-
tematically investigated. It is found that the failure probability for the MB31G model is larger
than that for the B31G model. And the failure probability is estimated as the largest for the
Weibull distribution and the smallest for the normal distribution. The effect of data scattering
in corrosion environments on tailure probability is also investigated and it is recognized that the
scattering of wall thickness and yield strength of pipeline affects the failure probability signifi-
cantly. The normalized margin is defined and estimated. Furthermore, the normalized margin is
used to predict the failure probability using the fitting lines between failure probability and
normalized margin.
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1. Introduction

The technique to predict pipeline failure due to
corrosion damage is necessary to determine the
corrosion tolerance when we design pipelines, be-
cause the buried pipelines transporting gas and
oil are usually laid underground and cxposed to
various corrosive bhoundary conditions. It seems
to be an inevitable technical information to assess
the safety lifc of aging pipelines. Therefore, sys-
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tematic investigations including damage and the
faiture of pipelines corresponding to various cor-
rosion environments are necessary.

The buried pipelines usually have various types
of defects such as corrosion and environment-
assist-cracking. The prediction of the remaining
strength of pressurized pipelines containing corro-
sion defects is frequently carried out using deter-
ministic methods. These methods use the nominal
values for both load and the resistance parame-
ters. However, it is well known that the load and
resistance parameters have uncertainties which
result from the measurement of the dimensions
of defects, the manufacture of the pipe and the
operating conditions of pipelines, etc.

So the failure analysis should be carried out
with the help of the probability method than the
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conventional deterministic approach {CDA) be-
cause the CIXA leads to uncertainties in the fail-
ure analysis with random variables imposcd on
various corrosion environments {Choi, 2000 ; Lee
and Pyun, 2002 ; Hopkins and Jones, 1992).

In this paper, the FORM ({first order reliability
method} is used in order to estimate the prob-
ability of failure in the buricd pipelines with
corrosion deflects. This method investigates the
[ailure probability of buried pipelines using the
first order Taylor serfes cxpansion of the LSF
{1imit staie function}. The cifects of varying dis-
tribution types of variables such as the normal,
lognermal and Weibull distributions on the fail-
ure probability of buried pipelines are systema-
tically investigated using the FORM for the cor-
roded pipeline.

2. Failure Pressure Models

The major [lacters for the failure of pipelines
transporting the high-pressurc gas arc known to
be mechanical damage and corrosion. Standards
for a regular hydrostatic test and a corrosion as-
sessment arc generally used o assess the effect of
the mechanical damage and corrosion on the
integrity of the pipelines. To assess the integrity of
corroded pipeling, we need to simplify the geom-
ctry of the vicinity of corroded part. Fig. 1 shows
a corrosion model and is generally [urther sim-
plified as shown in Fig. 2 to analyze the given
geomelric conliguration easily. The uncertain-
ty trom simplifying of corrosion defcets has not
been considered in this puper, because the ANS/
ASME B31G code has taken care ol the uncer-
tainty of idealized corrosion defects shown in

Fig. 2.

21 ANSI/ASME B3IG

A Tailure equation (or the corroded pipelines
is proposed by means of the data ol bursting
experiment and expressed with consideration of
rwo conditions below. [First, the maximum hoop
stress can’t exceed the yield strength of material.
Second, relatively short corrosion is prejected on
the shupe of parabola and long corrosion is pro-
jected on the shape of rectangular, The failure
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Fig. 2 Scction through an idealized corrosion defect

pressurc cquation for the corraded pipeline is
classified by the shape of parabola and rectangu-
lar as shown below {Ahammed, 1998).

by 20t [ GG/ ]
P b= GTiamMl
(f'or 4\‘,‘-""‘10.8 (%’) )2(%) ,<4) {(Parabola)
P 2Ot L | .
(For \.‘.""‘I‘I"O.B( f%)z( ? )>4) (Rectangular) ‘

where P is the failure pressure, 1) is the outer
diameter. M is the bulging factor, { is the thick-
ness of pipelines, 7 is the corrosion rate of 0.3 in
this paper, Tis the time, [. is the delect Tength of
corrosion region and Oyew 18 the yield strength.
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The bulging factor (M) is defined as below.

({7}

(i fos (9]0

M=co |
(l'or \I‘.""‘JJO.{%( ){3 )2< lf) ) >4> (4)

22 MB31G (Modified B31G)

Kiclner and Vieth pointed out some problems
on the definition of flow stress (F=1.11 )
and bulging factor, und proposed a new (low
stress such as F=chiw+69 (MPa) and a new
bulging facter as follows {(Kiciner and Vieth,
1990).

5 2(Oyera+69) [7”1----0.85(7)17‘/1‘) 1 (s)
7 D 1=085(pT/0) /M1

M:\.‘.";I -|-O.6275( 1{) )( lt) )70.003375( 1{3 )4( I; )

("0" ( fj ﬂ%)gso)
M:3.3+0.03z( L 2( D)

(o (511}

3. Faifure Probability

{6)

(7)

We initially assume that every variable is nor-
mal distribution and the probability distribution
is determined by its mean and standard devia-
tion. The failure probability is calculated using
the TORM that is one of the methods utilizing
rcliability index. The FORM method is denoted
from the fact that it is based on a first-order
Taylor serics approximalion of the LSF which is
defined us below (Lee and Pyun, 2002).

Z=R—1L (8)

where [0 is the resistance normal variable, and
L. is the load normal variable. Assuming that £
and [, arc statistically independent normally dis-
tributed random variables, the variabie 7 is also

normally distributed. In this paper, 2 indicates

the failure pressurc estimated by Lqs. (1}, (2)
and {5}, and I indicates the constant eperating
pressure.

The cvent of failure cccurs when K<L, that is
Z <. The probability ol failure (PF) s given as
below.

PE=P[Z<0]

Lolml 2o,

= e Y=o

where pr and ¢z are the mean and standard de-
viation of variabie Z, respectively, new variable
(Fis U= (7 — ) /a2, @ is the cumulative distri-
bution function for a standard nermal variable
and £ is the saflety index or reliability index
denoted as below.

pue 18— M Tl (10)
o Joh ot

Rackwilz and Fiessler proposed a mcthod 1o
estimate the reliability index using the procedure
as shown in Fig, 3. In this paper, we ilerated the
leop shown in Fig, 3 to determinc a reliable re-
liability index until il converges to a desire value
(AS=0.001) (Mahadevan and Haldar, 2G00).
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Where the coefficient of variation {C.0.V) is
denoted as below with the standard deviation, oz
and the mean, fz.

C.0.v=2% (11)

Hz
4, Non-Normal Distributions

4.1 Rackwitz-fiessler transformation
method

For the case of non—normal distribution of ran-
dom variables, Rackwitz and Fiessier proposed
the equivalent normal distribution with & and
o¥, by imposing two conditions: The cumula-
tive distribution functions and' the probability
density functions of the actual variables and the
equivalent normal variables should be equal at
the checking point (x*) on the failure surface.
Considering each statistically independent non-
normal variable individually and egquating its
cumulative distribution function with an equiva-
lent normal variable at the checking point, we
obtain the followings (Mahadevan and Haldar,
2000) .

S e 3
Fx (™) @( 3 )
=g — 0 (Fx(x™)) o¥

where. @ is the cumulative distribution function
of the standard normal variable, g and o¥ are
the mean and the standard deviation of the equi-
valent normal variable at the checking point,
respectively and Fx{x*) is the cumulative distri-

{12)

bution function of the original non-normal ran-
dom variables. Equating PDF (probability densi-
ty function) of the original variable and equiva-
lent normal variable at the checking point, we
obtain the followings.
1 ( ¥ — )
BY e B e
fX (x ) 6)}\.{! QS O')A(F
v PO (Fx ™)
Ox = 3
Fxlx®)
where ¢ is the PDF of the standard normal
variable and fx (%) is the PDF of the original
non-normal randeom variables. The non-normal
variables can be treated as normal distributed

(13)

variables tlirough the transformation of Eqs. (12)
and (13).

4.2 Normal and standard normal distribu-
tion

One of the most commonly used distributions
in engineering problems is the normal distributi-
on. They are symmetric with data more concen-
trated . in the middle than in the tails. The shape
of a normal distribution can be specified mathe-
matically in terms of two parameters : the mean
(ﬂz) and standard deviation (oz) of random
variable Z. The standard normal distribution is
a normal distribution with a mean of “0” and a
standard deviation of “1”. Normal distributions
can be transformed to standard normal distribu-
tions by the formula :

Z*/lz

S= gz

(14)
where 7 is the original random variable, u is
the mean of the original normal distribution and
oz is the standard deviation of original normal
distribution. The PDF, relationship among para-
meters, means and variances of the lognormal
distribution are presented in Table 1 (Mahadevan
and Haldar, 2000).

4.3 Lognormal distribution

In many engineering problems, a random vari-
able can’t have negative values due to the physic-
al aspects of the problem. In this situation, mo-
deling the variable as lognormal, that is consi-
dering the natural logarithm of the variable X, is
more appropriate, automatically eliminating the
possibility of negative values. If a random vari-
able has a lognormal distribution, then its natur-
al logarithm has a normal distribution. The log-
normal disteibution is commonly used for gener-
al reliability analysis, cycle-to~failure in fatigue,
material strength and loading variable in prob-
abilistic design. A and ¢ are the two parameters
which are characterizing the lognoermal distribut-
ion. The PDF, relationship among parameters,
means and variances of the lognormal distribu-
tion are presented in Table 1 {Mahadevan and
Haldar, 2000).
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Table 1 Characteristic of varying distributions”

Distribution Normal Distribution
. 1 { I(X*#z )2]
PDF x)=———exp| —5 |
T A AN
Parameter Hz, Oz
Mean
L E=ypg, =3
Variance te, Var=oz
Distribution Lognormal Distribution
1 1 /1Inx—A)\?
PP () =L exp [ (2AY]
f2(x) sxyiz P2 Iy

Parameter A g

E=6Xp(/‘i+%92), Var=E*(eS —1)

Mean,
Variance

Distribution Weibull Distribution

PDF | fz(x) :(%@-)(%)mile"p [_(%)m]
Parameter i, ©

Mean, E:cr( 1 +%)
Varianil Var=c2[1ﬂ(l+":—ﬁ>—r2(l+ﬁ)]

* I is the mean, Vay is the variance and I'( ) is the
gamma function

44 Weibull distribution

The Weibull distribution is commonly used to
describe material strengths and time to failure of
electronic and mechanical devices and compo-
nents. The Weibull distribution may be classified
as the two-parameter and three-parameter distri-
butions. In this paper, we take the two-parameter
Weibull distribution and systematically investi-
gate the effect of two-parameter Weibull distri-
bution of variable on the failure probability of
buried pipelines. The shape parameter, m and the
scale parameter, ¢ are the two values which are
characterizing the two-parameter Weibull distri-
bution. The PDF, relationship among parame-
ters, means and variances of the two-parameter
Weibull distribution are presented in Table |
{Mahadevan and Haldar, 2000} .

5. Normalized Margin

Mechanical and structural engineers have long
used safety factors to prevent failures in service.
During the early part of the twentieth century,

Ouic Sub Lee and Dong Hyeok Kim

there was increasing interest in replacing tradi-
tional practices with rational design procedures.
A significant breakthrough in these efforts was
the assessment of the strength of cables for the
Golden Gate Bridge by Freudenthal (Hecht,
2004). He examined test records and found that
the tensile strength of the cables had a Gaussian
distribution and therefore the knowledge of the
mean strength and standard deviation permitted
calculation of the failure probability under any
given value of load.

The normalized margin, NM, is denoted in
Eq. (15). The normalized margin has a negative
value, because the strength is always greater than
the load.

L—R

NM:T (15)

where I, is the mean of load, R is the mean of
resistance and ¢ is the standard deviation of
resistance.

It is not easy for the workers at real field to
calculating the failure probability using above
process. On the other hand, they can calculate the
normalized margin easily. If the relationship be-
tween failure probability and normalized margin
exists, the workers of real field obtain the failure
probability after they calculate the normalized
margin. In this paper, we investigate the relation-
ship beiween failure probability and normalized
margin systemically and present the results on a
graph.

6. Case Stduy

The random variables listed in Table 2 have
been utilized to estimate the failure probability of
the corroded pipeline (Ahammed, 1998).

Table 2 Random variables and their parameters
used in the case study

Variable Mcan C.OVv
P, 3 MPa 0.1
Oyieta 423 MPa 0.067
t 10 mm 0.05
d 3 mm 0.1
L 200 mm 0.05
D 600 mm (.03
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7. Results and Discussions

Fig. 4 shows the failure probability and relia-
bility index with exposure time of corroded pipe-
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Fig. 4 Relationship between failure probuability and
exposure time with varying distributions

lines using variables in Table 2.

It can be recognized in Fig. 4 that the failure
probability (PF} increases and reliability index
{RE) deccreascs with increasing of cxposure peri-
ods for each distribution of variables. And it is
noted that the failure probability of MB31G
model is larger than those of B31G model. It is
found in Figs. 4{a) and 4(b) that the differcnce
of failure probability between normal and lognor-
mal distribution is very small. But it is found in
Tigs, 4{a) and 4(c} that the difference of failure
probability between normal and Weibull distri-
bution is larger than those between normal and
lognormal distribution.

For the B31G model, it is recognized that the
failure probability of lognormal distribution is
aboul [.55XE-05(27.9%) larger than those of
normal distribution, when the exposure time from
last inspection is 40-year. And the failure prob-
ability of Weibull distribution is about 4.19 X
E-04(755%) larger than thosc ol normal distri-
bution, when the exposure time from last inspee-
tion is 40-year. But for the MB31G model, it is
recognized that the failure probability of legnor-
mal distribution is about 9.04 X E-04{12.4%} lar-
ger than those of normal distribution, when the
cxposure time from last inspection is 40-year.
And the failure probability of Weibull distributi-
on is about 2.35XE 03(32.2%) larger than those
of normal distribution, when the exposure time
from last inspection is 40-year.

It is found that Weibull distribution has the
largest increasing rate of failure probability and
the normal distribution has relatively smallest
increasing rate. And the lognormal distribution
has similar failure probability with normal distri-
bution. For the B31G model, the failure prob-
ability inereases rapidly afler about 35-year (17%
larger than Weibull distribution) exposure time,
in case of the normal and lognormal distribu-
tion, and increases rapidly alter about 30-year
exposure time, in case of the Weibull distribution.
However, for the MB31G model, the increasing
rate of the failure probability becomes larger after
about 25-year (17% smaller than Weibull distri-
bution) exposure time, in case of the normal and
Jognormal distributien, and after about 20-year
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exposure lime, in case of the Weibull distribution.
Fig. 5 shows the faifure probability and relia-

bility index with varying coefficient ol variation

o
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Fig. 5 Relationship between failure probability and
coellicient of variation {C.O.V.) with varying

distributions for B31G model

(C.0.V.) for distribution types of random wvari-
ablec of B3IG model. The meaning of having
larger €.0.V. is that the distribution of vaciable
is more scattered from the mean value. 1t is noted
in Iigs. 5{a} and 5{c) that the scattering of the
wall thickness and yicld strength of pipeline
allcets the failure probability significantly, if all
ol input variables have normal and Weibull dis-
tribuiions. That is, the effects of data scattering
characteristic of wall thickness and yield strengih
of pipeline on the Cailure probability seem (o be
most significant.

On the other hand, it is noted in Fig. S(b} that
the cffect of the scatiering of the operating pres-
sure and diameter of pipeline on the laflure prob-
ability is much pronounced, if all of input vari-
ables have lognormal distribution.

Fig. 6 shows the failure probability and relia-
bility index with varying C.O.V. lor distribution
types of random variable of MB31G model. Tt is
noted in Figs. 6(a) and 6(¢) thal the scallering of
the wall thickness and yicld swength ol pipeling
affects the failurc probability significantly as sim-
ilar to B31G model, it all of input variables have
normal and Weibull disiributions.

On the other hand, it is noted in Fig. 6(b) that
the cffect of the scattering of the operating pres-
sure and diameter of pipeline on the (ailure prob-
ability is much pronounced, if all of input vari-
ables have lognormal distribution.

FFigs. 7 and § show the normalized margin and
failure probability for B31G and MB31G models,
respectively. Figs. 7(a) and 8(a) show the rela-
tionship between normalized margin and {ailure
probability on lincar-seale. And Figs. 7(b) and
&(b) show the relationship between normalized
margin and failure probability on log scale. The
best fitting lines for three distribution types of
data for B3IG and MB31G maodels arc also
shown in Figs. 7{c}) and 8(c).

The polynomial equation is used to fit the data
with a line. The highest order of a polynomial
cquadon is selected when the stndard deviation
between fitting lines and data has minimum value.
The standurd deviations for varying polynomial
cquation are presented in Table 3. For B31G

madel, order of polynomial equation is three for
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normal distribution, four for lognormal distribut-
ion and three for Weibull distribution are found
to be good. And for MB31G model, order of three
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for normal distribution, seven for both lognormal
and Welbull distributions are found to be good.
The equations for the fitled line are shown in
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Table 4. distributions with varying normalized margin
It is noted in Figs, 7 and & that the rates of  increase with similar manner. But the increasing
failure probability for normal and lognormal
Table 3 Standard deviation for varying orders of
polynomial equation

Sl N Distribution types
o MB31G order —
| ! —a- Normal Distribution . ; normal | lognormal | Weibull
a0 Lognorrn:fi Distribution I 1 01766 1.3222 0.1030
= 4 Welbull Distribution | R - e L .
£:g oo = ! d B31G 2 0.1391 1.0033 0.1015
L '] -
§ 0060 3 $.0939 0.8884 0.0932
o 4 0.0954 0.8872 0.0945
@ 0015 P _
E | 5 0.0970 0.8959 €.0960
‘mW 0o o : -
w W Distribution types
sl R order T : -
T - normal 1 lognormal  Weibull
Erespmen st £ KAy ! 02512 14073 01978
Normalized Margin 2 0.1223 1.2640 (.1940
tal Lincar-scale 3 0.1018 1.2463 0.1535
' MB3IG! 4 0.1028 1.1980 0.1268
MB31G 4 -
. = Normal Distribution | 5 70']045 I.18¢68 0.1084 )
b | Lognormal Distribution of 6 0.1059 1.1238 0.1064
5, Weibull Distribution W - —
= I 7 0.1076 1.0992 0.1061
E | 8 0.1087 1204 0.1080
- -} -
Q i3 J
a ]
o
E i Table 4 The equations of fitting linc in the l'igs 7
5 i (¢} and 8{c) for —14< 40
2 e
{ Distribution types
5 Parameter; — :
SRR LI —— e ey nermal ‘ legnormal | Weibull
15 10 4 L 4 4 ] .
Normalized Margin a - 05945 —723l6 | 01638
(b) Log-scale B31G b 0.2472 1 —11.6822 | (.6409
I MBG _‘ ¢ —0.2861 --7.9875 0.0202
| ¢ Normal Distribution 1 d —0.0168, —2.0131 |6.29F 04
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I' Weibull Distribution e R 0 | —0i83 v
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= - Fit Line for Lognormal Parameter o
© Fit Line for Weibull y normal | lognormal | Weibull
£ 83, s o 1 —0,J084 | 709.57 4.0605
g 3 g b 05321 | 183226 | 6.3853
= | 4 ¢ - 02330 195194 3.0408
)| MB3IG d —0.0117 111503 0.8283
SRS S—. c 0 369.44 | 0.1293
. Normalized P;‘iargill ) f i g 71.186 i 00116
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rate of failure probability for Weibull distribution
with varying normalized margin is found to be
smaller than those of normal and lognormal dis-
tributions. And it is found in Figs. 7{a) and &(a)
that for the B31G and MB31G models, the fai-
lure probability rapidly increases for normal and
lognormal distributions, if normalized margin is
larger than about —3, But the same trend is found
for Weibull distribution with the normalized mar-
gin larger than about —35 for B31G model and
about —4 for MB31G model, respectively.

8. Conclusions

In this paper, the FORM (first order reliability
method) and the failure pressure model are uti-
lized to extract useful technical information in car-
rying out the effective failure control for the cor-
roded pipeline. Using the B31G and the MB31G
models, the effects of distribution types of vari-
ables such as normal, lognormal and Weibull dis-
tributions on the failure probability are systema-
tically studied and the following results are ob-
tained :

{1) It is noted that the Weibull distribution has
the largest failure probability and smallest reli-
ability index. On the other hand, the nermal dis-
tribution has the relatively smaller failure prob-
ability and reliability index. And the lognormal
distribution has the similar failure probability to
that of the normal distribution,

(2) The failure probability for the MB31G mo-
del is larger than that for the B31G model. It is
recognized that the design with an aid of the
B31G model is more conservative than that of the
MB31G model.

{3) For the B31G and the MB31G models, the
scattering of the wall thickness and yield strength
of pipeline affects the failure probability signi-
ficantly, if all of input variables have normal and
Weibull distributions. But the effect of the scat-
tering the operating pressure and diameter of
pipeline on the faifure probability is much pro-
nounced, if all of input variables have lognormal
distribution.

{4) The failure probability for normal and log-
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normal distributions with varying normalized
margin increases with similar manner. But the
increasing rate of failure probability for Weibull
distribution with varying normalized margin is
found to be smaller than those of normal and
lognormal distributions. And it is suggested that
the normalized margin and the failure probability
may be easily estimated using the fitting line be-
tween failure probability and normalized margin.
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