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This paper presents the effects of corrosion environments of failure pressure model for buried

pipelines on failure prediction by using a failure probability. The FORM (first order reliability

method) is used in order to estimate the failure probability in the buried pipelines with cor­

rosion defects. The effects of varying distribution types of random variables such as normal,

lognormal and Weibull distributions on the failure probability of buried pipelines are sys­

tematically investigated. It is found that the failure probability for the MB3lG model is larger

than that for the B3\ G model. And the failure probability is estimated as the largest for the
Weibull distribution and the smallest for the normal distribution. The effect of data scattering

in corrosion environments on t'ai/me probability is also investigated and it is recognized that the

scattering ot' wall thickness and yield strength of pipeline affects the failure probability signifi­

cantly. The normalized margin is defined and estimated. Furthermore, the normalized margin is

used to predict the failure probability using the fitting lines between failure probability and

normalized margin.
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1. IntrOduction

The techniquc to predict pipcline failure due to

corrosion damage is necessary to detcrmine the

corrosion tolerance when we design pipelines, be­

causc the buried pipelines transporting gas and
oil are usually laid underground and exposed to

various corrosive boundary conditions. It seems

to be an inevitable technical information to assess
the safety life of aging pipelines. Therefore, sys-
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tematic investigations including damage and the

failure of pipelines COITesponding to various cor­

rosion environments are necessary.
The buried pipelines usually have various types

of defects such as corrosion and environment­

assist-cracking. The prediction of the remaining

strength of pressurized pipelines containing corro­

sion defccts is frequently carried out using deter­

ministic methods. These methods use the nominal

values for both load and the resistance parame­
ters. However, it is well known that the load and

resistance parameters have uncertainties which

result from the measurement of the dimensions

of defects, the manufacture ot' the pipe and the

operating conditions of pipelines, etc.
So the failure analysis should be carried out

with the help of the probability method than the
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A sirnpliileation ora corroded surface t1aw in

a pi peline

conventional deterministic approach (CDA) be­

causc the CDA leads to unccrtainties in the fail­

ure analysis with random variables imposcd 011

various corrosion environments (Choi, 2000; Lee

and Pyun. 2002: Hopkins and Joncs, 1992).

In this paper, the [:ORM (first order reliability

method) is used in order to estim<Jte the prob­

<Jbility of fa iJure in the buried pi pelines with

corrosion defects. This method investigates the

failure probability of buried pipelines using the

first order Taylor series expansion of the LS F

(limit state function). The elTeets of varying dis­

tribution types of variables such as the normal,

lognorm<ll alld Wei bull distributions on the fail­

ure probability of buried pipelines are systema­

tically investigated using the FORM for the cor­

roded pipeline.
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2. Failure Pressure Models

(b) /{ec angu ar

Fig. 2 Section through ,oW idealized corrosion defect

pressure equation for the corroded pipeline is

classified by the shape of parabola and rectangu­

lar as shown below (Ahammed, 1998).

(I)

(2)

(Parabola)

( Reerangular)

L

( ! (L )2( D) )Cor -V 0.8 Dt <4

I~= I. J I 20"yj',d ~ 1- (l]T/ t) J

(for /08 ( f)f( ~) >4)

where PI' is the failure pressure, D is the outer

diameter. M is the bulging factor, t is the thick­

ness of pipelines, TJ is the corrosion rate 01" 0.3 in

th is paper, T is the time, IJ is the defect length 01"

corrosion region and Oyield is the yield strength.

The major factors for the failure of pipelines

transflorting the high-pressure gas arc known to

be l11eehanienl damage and corrosion. Standards

for a regular hydrostat ic test and a corrosion as­

sessment arc generally used to assess the etfcct of

the mechan ieal damage <lnd corrosion on the

integrity of tbe pipelines. To assess t.he i11legrity of

corroded pipeline, we need to simplify the geom­

et.ry of the vicinity of corroded parI. ]- ig. J shows

a corrosion model and is generally further sim­

plified as shown in rig. :2 to analyze the given

geometric configuration easily. The uncertain­

ty from simplifying of corrosion defects has not

been considercd in this paper, because the A NSf!

ASM E 1331 G code has t.aken earc of the uncer­

tainty of idcalized corrosion defects shown in

Fig. 2.

2.1 ANSI!ASME B31G

A failure equation for the corroded pipel ines

is proposed by meuns of the data of bursting

experiment and expressed with consideration of

two conditions below. First., the maximum hoop

stress eaJ 't exceed the yield strength of material.

Second, relatively short corrosion is projected on

the shape of parabola and long corrosion is pro­

jected on the shape of rectangular. The failure
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The bulging factor (M) is defined as below.

M= ,i l +08 ( L)2(.12)V . D L

(
, /--(- L )2( J)) . )
lor II O.R TJ .. ; .s4

(3)

the failure pressure estimated by [qs. (I), (2)
and (5), and L indicates the <.:onslant operatillg

pressure.

The event of failure occurs when R<L, tl1<1t is

Z<O. The probability of t'ai Iure (1'1-') is given as

below.

2.2 MB31G (Modified B31G)

Kiefner and Vieth pointed out some problems

on the definition of flow stress (iJ= I. I I !JYield)

and bulging factor, and proposed a new !low

stress such as ij=(JYiel<l+69 (MPa) and a new

bulging f~lCtor as follows (Kicfner and Vieth,

1990) .

p/=.2(!JYield-l-69) [_~--~.8S(l,7?'/t~ J
D 1.-0.l)S(l,77/t)/MI (S)

where jJz and O'z are the mean and standard de­

villtion or vari,\ble Z. respectivc!y, new variable

U is U~' (Z - f-!.l.) / (Jz, (/) is the cumulative d istri­

bution function for a standard norma! variable

and /3 is the safety index or reliability index

denoted as below.

i1I/==

( - i08(L)2(D»4)lor V· D t
(4)

j3 ~~ f.1:t = jJTI_~ j1L

oZ /6Hat
( 10)

(7)

_( L )2( D ) _( L )4( D )2M=Vi 110.627) D t -o.oom) D t
L 2 D) (6)

(for ( J) ) (t :S:SO)

1 (L )2( D)M=3_H-O.O,l2 D' T

( 1'0 r ({) ) 2( .Ii )> 50 )

Raek wit;,: and Fiessler proposed a method to

estimate the reliability index using the procedure

as shown ill Fig. 3. In this paper, we iterated the

loop shown in rig. 3 to determine a reliable re­

liability index until it <.:onverges to a desire value

(6..8::;:0.001) (Mahadevan and !-Ialdal'. 20(0).

r:a r 'u'ltJt~rl)~lt-ltd ~'1h.~'1\t':11.'1l".41~ JCUltWUl I

<1"'. .~ :.~... 'J' ,':.", ,l, '.J.. \n. t.' ,.'. "Ii

, ~ I '." .._ ,
.."'. - " I.'.) ,

[:"( I

I f. Ii;:
I •• : ... '"'v

(f.r,

:J

3. Failure Probability

\Ve initially assume thal every variable is nor­

mal distribution and the probabIlity distribution

is determined by its mean and standard devia­

tion. Thc failure probability is calculated using

the rORM thaI is one of the methods utilizing

reI iabil ity index. The I~'ORM method is dcnoted

from the fact that it is based on a first order

Taylor series approximation of the LSI-' which is

defined as below (Lee and PyUI1, 2002).

where R is the resistan<.:e normal variable, and

[, is the load normal variab Ie. Assuming that H

and L arc statistically independent normally dis­

tributed random variables. thc variable Z is also

normally distributed. J11 this paper, f( indicates 'Fig. 3 Proccss to determine the reliability index

cl /,1I.
t

I ("'I~lIlrlhl'r;liA J'"fVII~II"-- [;' _...
," 1.._-..-: (Of'I*,U"~'lt 1'\\'41"":~n~~t~'_~••~·,

(8)Z=R-L
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Where the coefficient of variation (e.O. V) is

denoted as below with the standard deviation, Oz

and the mean, jlz.

variables through the transformation of Eqs. (J 2)
and (13).

where ¢ is the PDF of the standard normal

variable and /x(x*) is the PDF of the original

non~normal random variables. The non-normal

variables can be treated as normal distributed

(14)s= Z-jlz
Oz

4.2 Normal and standard normal distribu­

tion

One of the most commonly used distributions

in engineering problems is the normal distributi­

on. They are symmetric with data more concen­

trated in the middle than in the tails. The shape

of a normal distribution can be specified mathe·

maticaUy in terms of two parameters: the mean

(jlz) and standard deviation (oz) of random

variable Z. The standard normal distribution is

a normal distribution with a mean of "0" and a

standard deviation of "1". Normal distributions

can be transformed to standard normal distribu­

tions by the formula:

4.3 Lognormal distribution

In many engineering problems, a random vari­

able can't have negative values due to the physic­

al aspects of the problem. In this situation, mo·

deling the variable as lognormal, that is consi­

dering the natural logarithm of the variable X, is

more appropriate, automatically eliminating the

possibility of negative values. If a random vari­

able has a lognormal distribution, then its natur­

al logarithm has a normal distribution. The log­

normal distribution is commonly used for gener­

al reliability analysis, cycle-to-failure in fatigue,

material strength and Loading variable in prob­

abilistic design. Jl and S' are the two parameters

which are characterizing the lognormal distribut­

ion. The PDF, relationship among parameters,

means and variances of the lognormal distribu­

tion are presented in Table I (Mahadevan and

Haldar, 2000).

where Z is the original random variable, flz is

the mean of the original normal distribution and

Oz is the standard deviation of original normal

distribution. The PDF, relationship among para­

meters, means and variances of the lognormal

distribution are presented in Table 1 (Mahadevan

and Haldar, 2000).

(13)

( 12)

(11)

¢1@-l(Fx(x*)1

fx(x*)

c.o.V=~
jlz

4. Non-Normal Distributions

(
X*~f1N)

Fx(x*)=(/J o!i:<_'

jlJ/=x* - @-l(Fx(x*) oJ!

where @ is the cumulative distribution function

of the standard normal variable, fJJ/ and of are

the mean and the standard deviation of the equi­

valent normal variable at the checking point,

respectively and F x (x*) is the cumulative distri­

bution function of the original non~nonnal ran­

dom variables. Equating PDF (probability densi­

ty function) of the original variable and equiva­

lent normal variable at the checking point, we

obtain the followings.

4.1 Rackwitz-fiessler transformation

method
For the case of non-normal distribution of ran­

dom variables; Rackwitz and Fiessler proposed

the equivalent normal distribution with fJ..'; and

OJ!, by imposing two conditions: The cumula­

tive distribution functions and the probability

density functions of the actual variables and the

equivalent normal variables should be equal at

the checking point (x*) on the failure surface.

Considering each statistically independent non­

normal variable individually and equating its

cumulative distribution function with an equiva­

lent normal variable at the checking point, we

obtain the followings (Mahadevan and Haldar,

2000) .
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Table 1 Characteristic of varying distributions'

Distribution Normal Distribution

PDF fz(x) =_1-exp [ __L( X-ttz YJ
6z.,l2ir 2 (lz

Parameter flz, (Jz
Mean,

E=ttz, Var=(J~
Variance

Distribution Lognormal Distribution

1 [1 (Inx-,1YJPDF fz(x) = sx/2ii exp -2 --s-

Parameter A, S
Mean,

E=exp( ,1++S2
), Var=EZ(e S

' -1)
Variance

Distribution Weibull Distribution

PDF fz(x) =( 7)( ~ r-1exp [-( ~rJ

Parameter m, C

Mean, E=cr( J+ ~)
Variance

Var=c2 [r( 1+ ;)-rz( 1+ ~)J

*E is the mean, Var is the variance and r( ) is the
gamma function

4.4 Weibull distribution

The Weibull distribution is commonly used to

describe material strengths and time to failure of
electronic and mechanical devices and compo­

nents. The Weibull distribution may be classified
as the two-parameter and three-parameter distri­

butions. In this paper, we take the two-parameter

Wei bull distribution and systematically investi­

gate the effect of two-parameter Weibull distri­

bution of variable on the failure probability of

buried pipelines. The shape parameter, m and the
scale parameter, C are the two values which are

characterizing the two-parameter Weibull distri­
bution. The PDF, relationship among parame­

ters, means and variances of the two-parameter

Weibull distribution are presented in Table I
(Mahadevan and HaJdar, 2000).

5. NormaJized Margin

Mechanical and structural engineers have long
used safety factors to prevent failures in service.

During the early part of the twentieth century,

there was increasing interest in replacing tradi­

tional practices with rational design procedures.

A significant breakthrough in these efforts was

the assessment of the strength of cables for the

Golden Gate Bridge by Freudenthal (Hecht,

2004). He examined test records and found that

the tensile strength of the cables had a Gaussian

distribution and therefore the knowledge of the

mean strength and standard deviation permitted

calculation of the failure probability under any

given value of load.

The normalized margin, NM, is denoted in

Eq. (15). The normalized margin has a negative

value, because the strength is always greater than

the load.

( 15)

where L is the mean of load, R is the mean of

resistance and OR is the standard deviation of

resistance.

It is not easy for the workers at real field to

calculating the failure probability using above

process. On the other hand, they can calculate the

normalized margin easily. If the relationship be­
tween failure probability and normalized margin

exists, the workers of real field obtain the failure
probability after they calculate the normalized

margin. In this paper, we investigate the relation­
ship between failure probability and normalized

margin systemically and present the results on a

graph.

6. Case Stduy

The random variables listed in Table 2 have
been utilized to estimate the failure probability of

the corroded pipeline (Ahammed, 1998).

Table 2 Random variables and their parameters
used in the ease study

Variable Mean C.O.V
Pa 5MPa 0.1

(JyiEld 423 MPa 0.067
t 10mm 0.05
d 3mm 0.1
L 200mm 0.05
D 600mm 0.03
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7. Results and Discussions
lines using variables in Table 2.

It can be recognized in Fig. 4 that the failure

probability (PF) increases and reliability index

(RE) decreases with increasing of exposure peri­

ods for each distribution of variables, And it is

noted that the failure pl'obability of MB31G

model is larger than those of DJ 1G model. It is

rOLind in Figs. 4(a) and 4(b) that the differcnce

of failure probability betwcen normal and lognor­

mal distribution is very small. But it is found in

rigs.4(a) and 4(c) that the difference or failure

probability between normal and Weiblill distri­

bution is larger than those betwecn normal and

lognormal distribution.

For the 8310 model, it is recognized that the

failure probability of lognormal distribution is

about 1.55 X 8--05 (27.9%) larger than those or

normal distributioll, when the exposure time from

last inspection is 40-year. And the failure prob­

ability of Weibull distribution is ubollt 4. J9 X

E-04(755%) larger than those or normal distri­

bution. when the exposure time from last inspec­

tion is 40-year. But for the M B3l G model, it is

recognized that the failure probability of lognor­

mal distribution is about 9,04 X E-04( 12.4%) lar­

ger thun those of normal distribution, when the

exposure time [rolll last inspection is 40-·year.

And the failure probability of Weibull distributi­

on is about 2,35 X F ·03 (32.2%) larger than those

of normal distribution, when the exposure time

rrom last inspection is 40-year.

It is found tllat Weibull distribution has the

largest increasing rate of failure probability and

the normal distribution has relatively smallest

increasing rate. And rhe lognormal distribution

has similar failure probubility with normal distri­

bution. For the IB IG model, the failure prob­

ability increases rapidly after abollt 35-year (.17%
larger th<ln Weibull distribution) exposure time,

in case of the normal and lognormal distribu­

tion, and increases rapidly arter abollt 30-year

exposure time, in case of the Wei bull distribution .

However, for the MB31G model, the increasing

rate of the failure probability becomes larger aftcr

about 25-year (17% smaller than Wei bull distri­

bution) exposure time, in case of tllc normal and

lognormal distribution, and after abollt 20-year

.. '<.

I.

;.
.c.

!~

r" L
.::

I:
I -

.j •.;~
1 .-."
L·.'

'-'--"

"

& I
I'

~~-, ~ .-'--1I'" ~ :-- .J,)

.~

r·t~TJ\1' t1=.1(.bl'iO:l
1'l:·:t!3I<v

t FI:'A~1::~

HhO.,)''',
~1J,a31~

• -- L

.....~-.---..,-~-. ~ ,--
\) 3': 1'1

1-~1

.
I ..

, .

.. ,

<.

,-,_P'..... ~

weibU1lo;stlitJlIl]
, PF(R:!tC)
, PFjMB31G)

• nE(B31G)
-. AElMB31Cj

Exposure Imp. from Lastlnspectloll(ycar)

(11; L'"~lhHlllal dis:rihlll'OIl

"'(·1) -

'''I,~I-

C'(o.

l:xposurc Time from Lastlnspcctiol1(year)

;a.: ,"erma: <!IMrih,Jliull

11t"1.1_

f:~J
~ ,.\,,,j
~ "!It"t'l:
.:::

u~ ,~".'~1
(Io.... u ....

,...----,--... " "-....,-,~,-,r---.,-'
:) I'. ~o\) ..... Il

... ,1> J
"'J/I":

~t'tf'''<
~ ,,"","""j

'"e '".\
Q.

~ ·';J."H

.2
ffi to·t'

lJ..

.~.;(v...YI

~ 1.,).(.Co

e ""'\1
0..
~ ll"(l
::J
~ \..·I.X\,"l~
lL

Fig. 4 shows the railurc probability and relia­

bility index with exposure time of corroded pipe-

"xposlire Tin from ulSllnspeclion(yoor)

(e) WcibulJ distributlOll

Fig.4 Relationship bclween failure probability and

exposure time with varying distributions
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(e.0. Y.) for distribution types of random varI­

able of BJ1G model. The meaning of having

larger e.O.V. is that t11e distribution of variable

is more scattered from the mean value. It is noted

ill Figs. 5 (a) and 5 (c) tlHlt the scatlering of the

wall th ick ness and yield strength or pipeline

al'l'eds the I~lilure probability significantly, if all

of input variables have normal and Wcibull dis­

tributions. That is, tJ)e effects of data scanering

characteristic of wall thickness and yield strength

of pipeline Oll the Cailure probability seem to be

most significant.

On the othcr hand, it is noted in Fig. 5(b) that

the effeet of the seatleri ng of the oper,lling pres­

sure and diamder of pi peline all the I'ailure prob­

ability is mueh pronounced, if all 01' input vari­

ables have lognormal distribution.

Fig. 6 shows the failure probability <lI1d relia­

bility index with varying e.0.v. f()r (\istribution

types of random variahle of MB31G model. [t is

noted in Figs. Ma) and 6(c) that the scattering of

the wall thickness and yield strength 01" pi pel inc

atlects the failure probability significanrly as sim­

ilar to B3 JG model, if all of input vari abies have

normal and Weibull distributions.

On the other hand. it is noted in Fig. 6 (b) fhat

the effect or the scattering of the operating pres­

sure and diameler of pipeline on the failure prob­

ahility is much pronounced. if all of input vari­

ables ha ve lognormal distribution.

Figs. 7 and 8 show the normalized margin and

failure probability for B3l G and M lU IG models,

respectively. Figs. 7 (a) and 8 (a) show the rela­

tionship between normalized margin and Cailure

probability on linear-scale. And Figs. 7 (b) and

8 (b) show the relationship bet ween normalized

margin and I'ailure probahility on ]ogsca[e. The

best titting lines for three d istrihution types or

data for B31G and MB31G models arc also

shown in Figs. 7 (c) ilnd 8 (c).

The polynomial eq uation is used to fit the data

with a line. The highest order of a polynomial

equation is selected when the standard deviation

between filling lincs and data has minimum value.

The st.mdard deviations for varying polynomial

equation are presented in Table 3. For 133IG

model, order of polynomial equation is three for
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normal distribution, four for lognormal distribut­

ion and three for Weibull distribution are found

to be good. And I'<H MB31G model, order of three

for normal distribution, seven for both lognormal

and \Veibull distributions are found to be good.

The equations for tbe filled line arc shown in
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Table 4.

It is noted in Figs. 7 and 8 that the rates of

failure probability for normal ancl lognormal

distributions with varying normalized margin

increase with similar manner. But. the increasing

Table 3 Standard dcviation for varyi ng orders of

polynomial equation

Normall"ed Margin

(c) \-it linc with log scale

Fig. 8 Relationship betwccn failurc probability and

normali;red margin with varying distributions

for M1331G mode!
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rate offailure probability for Weibull distribution

with varying normalized margin is found to be

smaller than those of normal and lognormal dis­

tributions. And it is found in Figs. 7 (a) and 8 (a)

that for the B31 G and MB31 G models, the fai­

lure probability rapidly increases for normal and

lognormal distributions, if normalized margin is

larger than about - 3. But the same trend is found

for Weibull distribution with the normalized mar­

gin larger than about -5 for B3JG model and

about -4 for MB31G model, respectively.

8. Conclusions

In this paper, the FORM (first order reliability

method) and the failure pressure model are uti­

lized to extract useful technical information in car­

rying out the effective failure control for the cor­

roded pipeline. Using the B31G and the MB31G

models, the effects of distribution types' of vari­

ables such as normal, lognormal and Wei bull dis­

tributions on the failure probability are systema­

tically studied and the following results are ob"

tained:

(I) It is noted that the Weibull distribution has

the Largest failure probability and smallest reli­
ability index. On the other hand, the normal dis­

tribution has the relatively smaller failure prob­

ability and reliability index. And the lognormal
distribution has the similar failure probability to

that of the normal distribution.

(2) The failure probability for the MB31 G mo­

del is larger than that for the B31 G model. It is

recognized that the design with an aid of the
B31 G model is more conservative than that of the

MB31G model.
(3) For the B31G and the MB31G models, the

scattering of the wall thickness and yield strength

of pipeline affects the failure probability signi­

ficantly, if all of input variables have normal and

WeibuU distributions. But the effect of the scat­

tering the operating pressure and diameter of

pipeline on the failure probability is much pro­

nounced, if all of input variables have lognormal

distribution.
(4) The failure probability for normal and log-

normal distributions with varying normalized

margin increases with similar manner. But the

increasing rate of failure probability for Weibull

distribution with varying normalized margin is

found to be smaller than those of normal and

lognormal distributions. And it is suggested that

the normalized margin and the failure probability

may be easily estimated using the fitting line be­

tween failure probability and normalized margin.
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